
Citation: Carcagnì, P.; Leo, M.;

Del Coco, M.; Distante, C.;

De Salve, A. Convolution Neural

Networks and Self-Attention

Learners for Alzheimer Dementia

Diagnosis from Brain MRI. Sensors

2023, 23, 1694. https://doi.org/

10.3390/s23031694

Academic Editor: Bhanu Prakash Kn

Received: 5 December 2022

Revised: 28 December 2022

Accepted: 30 January 2023

Published: 3 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Convolution Neural Networks and Self-Attention Learners for
Alzheimer Dementia Diagnosis from Brain MRI
Pierluigi Carcagnì †, Marco Leo *,† , Marco Del Coco †, Cosimo Distante † and Andrea De Salve †

National Research Council of Italy, Institute of Applied Sciences and Intelligent Systems 1, 80078 Pozzuoli, Italy
* Correspondence: marco.leo@cnr.it
† Current address: Consiglio Nazionale delle Ricerche, Istituto di Scienze Applicate e Sistemi Intelligenti,

Campus Ecotekne, DHITECH Building, Via Monteroni SNC, 73100 Lecce, Italy.

Abstract: Alzheimer’s disease (AD) is the most common form of dementia. Computer-aided diagnosis
(CAD) can help in the early detection of associated cognitive impairment. The aim of this work is
to improve the automatic detection of dementia in MRI brain data. For this purpose, we used an
established pipeline that includes the registration, slicing, and classification steps. The contribution of
this research was to investigate for the first time, to our knowledge, three current and promising deep
convolutional models (ResNet, DenseNet, and EfficientNet) and two transformer-based architectures
(MAE and DeiT) for mapping input images to clinical diagnosis. To allow a fair comparison, the
experiments were performed on two publicly available datasets (ADNI and OASIS) using multiple
benchmarks obtained by changing the number of slices per subject extracted from the available 3D
voxels. The experiments showed that very deep ResNet and DenseNet models performed better than
the shallow ResNet and VGG versions tested in the literature. It was also found that transformer
architectures, and DeiT in particular, produced the best classification results and were more robust
to the noise added by increasing the number of slices. A significant improvement in accuracy
(up to 7%) was achieved compared to the leading state-of-the-art approaches, paving the way for the
use of CAD approaches in real-world applications.

Keywords: assistive technology; MRI; medical image analysis; computer-aided diagnosis; masked
auto-encoders; deep learning; vision transformers

1. Introduction

Dementia is a general term used to describe a premature deterioration of cognitive
function beyond biological aging. Alzheimer’s dementia (AD) is the most common form of
dementia (70% of cases). It alters memory, thinking, and behavior and gradually affects
daily activities and functions. It is an irreversible and complex neurological disorder
for which there is no generally effective medical treatment. However, early detection of
associated cognitive impairment allows the provision of preventive medications to slow
down the progression of the disease [1]. The traditional method for diagnosing Alzheimer’s
dementia is to observe people with mild cognitive impairment (MCI) and assess cognitive
changes over the years. In this way, doctors can diagnose AD only when the symptoms are
evident, and the disease has already reached an advanced stage. On the other hand, AD
results from the progressive loss (degeneration) of brain cells. This degeneration can show
up in brain scans when symptoms are very mild or even before they occur [2].

Structural imaging techniques such as magnetic resonance imaging (MRI) visualize
the structures of the brain and can reveal the loss of neurons and their connections (atrophy)
as well as damage in specific regions (e.g., hippocampus) [3]. MRI has made it possible to
obtain a three-dimensional (3D) reconstruction of brain structures and to measure the size
of the hippocampus and related regions. As a result, MRI-based diagnostics have become
an integral part of clinical practice in the diagnosis and evaluation of dementia [4,5]. How-
ever, this is a difficult and subjective task that requires a high level of expertise to correctly
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analyze the images, as neuropathologists examine large brain areas to identify distinct
and finely differentiated morphologies [6]. It is also tedious and time-consuming, can lead
to differing opinions among experts, and has a slow analysis throughput, making MRI
impractical for routine examinations [7]. Computer-aided diagnosis (CAD) can help over-
come these drawbacks. Sometimes multimodal data (MRI, positron emission tomography
PET and genetic analysis) [8] are used, but this makes the process more complex because
several types of regularizations have to be introduced. For this reason, CAD approaches
based on a single data modality, and MRI in particular, are the most promising [9].

Existing MRI-based CAD approaches can use the entire 3D brain volume [10] or a
series of 2D slices extracted from it [11]. The initial studies relied on traditional algorithmic
pipelines (hand-crafted features combined with shallow classifiers) [12]. More recently,
following the trend in medical imaging [13–15], Deep Learning (DL) is the most common
method for automatic brain feature extraction. Since it depends on many training param-
eters, using DL on 3D brain volumes significantly increases the computational cost [10].
In addition, the availability of 3D data is limited, and its use may suffer from the curse of
dimensionality[16], limiting the ability to create accurate models. In addition, pre-trained
3D models are not as widely available as 2D models (trained on huge image datasets) [17].
For the above reasons, deep models based on 2D data have the potential to achieve better
accuracy in this domain, but unfortunately, there are still several related open issues:

1. Most existing approaches for binary classification (dementia vs. normal) were tested
on 2D MRI slices randomly sampled from the available 3D data without considering
to which subject they belonged (slice-level data split strategy) [18,19]. This means
that slices belonging to the same subject can occur in both the training and testing
processes; in this way, the test data can have a distribution more similar to that of the
training set than would be expected from new data belonging to new subjects. This is
the well-known data leakage problem in machine learning [20] that has called into
question the validity of many previous MRI-based CAD studies and made their use
in actual clinical screenings uncertain [21]. The few studies that perform classification
of neurologic diseases using MRI and with no data leakage are listed and discussed
in [11,22] where it emerges that automatic classification ability is still unsatisfactory
to make MRI-based CAD useful in clinical practice.

2. How many 2D slices should be extracted from the available 3D MRI volumes is an
open question. Increasing the number of slices per subject may add a little discrimi-
natory information hidden in a larger amount of useless data. The only benchmarks
found in the literature are those where the number of slices per subject was fixed a
priori (usually 8). The ability of the classifiers to handle this has therefore not been
studied at all.

3. Deep-learning models and, in particular, convolutional neural networks (CNN) have
revolutionized computer vision, but the most powerful recent CNN models have not
yet been explored for AD diagnosis from MRI data. This may be due to the complexity
of models’ implementation, data preparation, and validation techniques used in the
machine learning community [23].

4. Recent findings in machine learning beyond Convolutional Neural Networks have
also not been tested. It has been shown that the mechanism of self-attention can be a
viable alternative for building image recognition models [24]. It can be used to direct
attention to key areas in the image to obtain high-level information, but as far as we
know, this research direction has been less explored in CAD. Recently, there have
been some groundbreaking experiments with 3D brain data, but there is no work
addressing AD-related issues [25].

In this work, an attempt is made to overcome the above drawbacks with the aim of
improving the automatic detection of dementia in MRI brain data. The hypothesis is that
the 2D slices extracted from MRI brain data contain relevant information for dementia
detection, but unfortunately it is embedded in a large amount of structural data and
cannot be fully highlighted by the state-of-the-art classification approaches. Therefore,
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the key idea is to apply more powerful approaches that can better characterize the data
distribution, retain useful information for dementia detection and discard useless ones. For
this purpose, the proven pipeline combining the registration, slicing and classification steps
has been used. The contribution of this research is that, for the first time, we have explored
three of the latest and most promising CNN architectures and two Vision Transformers
(ViT) [26] based approaches for mapping input images to clinical diagnosis. In particular,
the Resnet [27], DenseNet [28], and EfficientNet [29] architectures were tested. They
are currently among the best performing in image classification tasks and have been
proven in many other medical image analysis applications [30]. On the other hand, two
transformer-based architectures have been implemented: self-attention learners called
Masked AutoEncoders (MAE) [31], which are able to automatically highlight relevant
regions in brain images, and data-efficient image transformers (DeiT) [32,33], which use
a renewed training procedure and require far fewer data and computational resources to
build a powerful image classification model. Transformer-based architectures have recently
achieved remarkable success and have shown excellent performance on a wide range of
image-processing tasks. Transformer-based architectures rely entirely on self-attention
mechanisms to establish global and local dependencies between inputs and outputs [34].

Experiments were performed on two large, publicly available datasets and showed a
significant improvement in subject-level classification compared to the leading approaches
in the state of the art. Furthermore, for each CNN and ViT approach, an evaluation was
performed on several benchmarks to assess knowledge extraction and generalization capa-
bilities when the number of slices per subject changes (4, 8, and 16 slices were considered).
To allow a fair comparison of classification methods (which is the goal of this paper), 3D
volume registration and 2D slice extraction were performed using the same approaches as
comparative works in the literature. Noise-related reliability introduced by MRI acquisition
with various scanning devices is beyond the scope of this paper. In this regard, the reader
may refer to several papers addressing the role of entropy in brain MRI data [35,36], and
the effectiveness of 3D data registration [37]. The remainder of the paper is organized as
follows: Section 2 describes materials and methods, while Section 3 reports experimental
results. Finally, Section 4 concludes the paper.

2. Materials and Methods

Two publicly available datasets will be used in the experimental phase, namely the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu, accessed
on 31 January 2022) and the Open Access Series of Imaging Studies (OASIS) database
(www.oasis-brains.org, accessed on 31 January 2022). The ADNI initiative, involving sev-
eral centers, was launched in 2004 with the goal of developing biomarkers for the early
detection and tracking of AD. Over time, several types of longitudinal data have been
collected: demographic data, magnetic resonance imaging (MRI), positron emission tomog-
raphy (PET) images, genomic sequence variations, and clinical and cognitive assessments.
The dataset consists of 4 subsets and in this work, T1-weighted MRI data from subset 2
(namely ADNI-2) were used. ADNI-2 includes longitudinal follow-up of 391 subjects from
the 2 previous ADNI phases and recruitment of 780 new participants, resulting in a total of
1171 subjects [38]. The OASIS dataset [39] includes cross-sectional (OASIS -1) and longi-
tudinal (OASIS -2) T1-weighted MRI, longitudinal/multimodal (OASIS -3), and clinical
(OASIS -4) data. This work used the cross-sectional collection of 416 subjects aged 18 to 96
years provided by OASIS -1. For each subject, 3 or 4 individual scans were obtained in a
single session. From both datasets, 200 subjects were used: 100 patients clinically diagnosed
with very mild to moderate Alzheimer’s disease (AD) and 100 healthy controls (or normal
controls - NC). They are the same as those used in [22]. Table 1 contains demographic
details for both datasets used in the experimental sessions.

adni.loni.usc.edu
www.oasis-brains.org
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Table 1. Details of the datasets.

Dataset Classes Subjects Gender Age (in Years)
(Women/Men ) (Range; Mean ± SD )

ADNI-2 AD 100 44/56 56–89 ; 74.28± 7.96
NC 100 52/48 58–95 ; 75.04± 7.11

OASIS-1 AD 100 44/56 62–96; 76.70± 7.10
NC 100 52/48 59–94; 75.50± 9.10

To make the evaluation as fair as possible, all tests followed the strict workflow shown
in Figure 1 and explained in more detail below.
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Overall Architecture/Slices
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Figure 1. Research workflow: the input 3D data are preprocessed and divided into slices. Then,
a k-folding is performed, taking care not to insert slices from the same subject into more than a
single fold. The slices are ordered sequentially by their entropy value and prepared in groups of 4, 8,
and 16 slices. Finally, the tests are performed in a k-fold manner through the different architectures
working on different subsets defined by the number of slices retained per subject.

The first step was data preparation. For the ADNI-2 dataset, starting from a T1-
weighted 3D image, a processing step was performed to co-register the input to the “Mon-
treal Neurological Institute standard template space”, commonly referred to as MNI152
(at a voxel size of 1 mm), available in the FSL [40] package version 6.0.3, using the SyN
algorithm included in the ANTs [41] package (version 2.1.0) with default parameters. Brain
tissue in the MRI-registered image was then isolated from non-brain tissue using the brain
mask of the standard template space. For the dataset OASIS -1, available registered data
from standard post-processing procedures (e.g., atlas registration, bias field correction)
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were used directly to allow the fairest possible comparison with existing methods. Based
on the registered volumes, 2D slices were extracted for both datasets (slicing).

The slices were then split into folds for cross-validation, preserving the information
about the subject to which they belong. In this way, slices belonging to one subject can
appear only in the training or validation sets (i.e., no data leakage is introduced). Then, slice
selection was performed based on the amount of information carried on, i.e., by calculating
the Shannon entropy ES for each axial slice. In particular, the following formula was used:

ES = ∑
k

pk log2(pk) (1)

where k is the number of grey levels in the slice and pk is the probability of occurrence for
grey level k estimated as the relative frequency in the image. Then, for each subject, the
slices were ordered in descending order based on their entropy values, and finally, the M
axial slices (varying depending on the experiment to be performed) that had the highest
entropy were selected according to [42,43].

Selected slices are then provided as input to the end-to-end classification pipeline
using DL strategies. Various CNN architectures and the recently introduced MAE and DeiT
have been tested.

Following the leading literature, k-fold cross-validation (k = 5) was performed for
all experiments reported in this section. The most difficult problem of classifying slices
according to a subject-level split was addressed. Each model was tested on the ADNI-2
and OASIS -1 datasets on benchmarks created using a different number of slices per subject
(M ∈ {4, 8, 16}) extracted by exploiting the Shannon entropy value.

It is worth noting that the number of slices is not a hyperparameter of the models. To
understand how each model handles the information embedded in noisy data, incremental
sizes of benchmarks were established. For this purpose, the series of powers of 2 was
chosen, taking into account that most previous works used 8 slices per subject.

For both the CNN and ViT architectures, fine-tuning was performed using models
trained on the Imagenet dataset. Data augmentation strategies were used to avoid overfit-
ting during training. In addition, each input slice image was adjusted to a joint resolution
of 224× 224 pixels using bicubic interpolation. After several experimental tests, different
transformations were applied to the input images for all considered CNN architectures,
more precisely: random rotation of 5◦; random horizontal shift with an image width frac-
tion of 0.05; random vertical shift with an image height fraction of 0.10; random scaling
with a scaling factor in the range (1.05, 1.1). Finally, the SGD optimizer was used with an
initial learning_rate = 0.001, a momentum of 0.9, and a decay of the learning rate by a factor
of 0.1 every 30 epochs. The maximum number of training epochs was set to 100. The ViT
architectures used the training hyperparameters and image augmentation strategies based
on the cutmix and mix up approaches as described in the original paper implementation
of [31,32].

A brief introduction to the deep models used is given below.

2.1. Convolutional Neural Networks

Convolutional neural networks ( CNN ) have become the standard for most computer
vision tasks over the past decade.

CNNs gradually add a series of convolutional layers to a shallow neural network,
extracting high-level features from the input image and passing them to the fully connected
layers responsible for low-level analysis and final decision. The ability of the convolu-
tional layers to retrieve effective features that can well characterize the image under study
guarantees a non-negligible advantage compared to the classical methods based on hand-
crafted features. In fact, this approach has allowed an improvement in the generalization
capabilities and consequently in the accuracy of the results, which cannot be achieved by
classical methods. On the other hand, these amazing capabilities have their price in terms
of memory and computational requirements related to the large number of parameters
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that need to be trained. Today, the scientific community is mainly focused on building
large datasets and introducing new models capable of performing well on increasingly
challenging tasks related to real-world problems [44]. Among the models that have given a
boost to the field of Deep Learning worldwide, some have already been tested in medical
imaging [45], but few have been tested for brain MRI analysis [46]. In the following, we
detail the models presented and tested for the first time in this work for detecting AD in
MRI slices.

2.1.1. ResNet

Convolutional networks used by the computer vision community are getting deeper
and deeper every year. Unfortunately, when the depth of the network exceeds certain limits,
the accuracy goes into saturation and then rapidly decreases due to the vanishing gradient.
This makes it impossible to train very deep networks and use them for complex problems.
To overcome this degradation problem, ResNet architectures [27] introduce the residual
learning framework, which exploits shortcut identity connections between convolutional
layers (Conv Block) to reinvigorate information flow. This has been shown to effectively
mitigate degradation phenomena, allowing the use of very deep networks and providing a
non-negligible gain in accuracy. Residual units are typically non-linear, which prevents a
ResNet from expanding exponentially into separate subnetworks. In this work, four resid-
ual network architectures were tested: ResNet34, ResNet50, ResNet101, and ResNet152,
where the number indicates the number of layers that can actually be trained.

2.1.2. DenseNet

Backpropagation algorithms and gradient-based methods used for training deep
neural networks use the computation of the partial derivatives of the loss function with
respect to the weights of the network to provide updates to the learnable parameters of
the network. As the depth of the network increases, the value of the gradient decreases
exponentially, leading to the vanishing gradient problem. DenseNet [28] attempts to
address this problem by ensuring maximum information (and gradient) flow by connecting
each layer directly to each of the following layers. In other words, rather than entrusting the
network’s representational capability to extremely deep or wide architectures, DenseNet
leverages feature reuse. Unlike ResNet, which uses summation to combine features before
they reach the layers, DenseNet uses the concatenation of feature maps. However, for this
process to be feasible, the feature maps must not change the size, which is the case with
CNN downsampling layers. To achieve this, the DenseNet is divided into dense blocks
within which the feature maps have a constant size. Variation in the dimensions of the
feature maps is achieved by transition layers, each consisting of a convolutional layer and
a pooling layer, between two adjacent dense blocks.

This approach has several advantages: First, the proposed connection strategy requires
fewer parameters than a corresponding traditional CNN. Moreover, DenseNet involves
narrower layers (e.g., 12 filters) than other CNN approaches and the addition of a small
number of new feature maps. Finally, the training phase also benefits from this structure
since each layer can directly access the gradients. In this work, four DenseNet network
architectures were tested: DenseNet121, DenseNet161, DenseNet169, and DenseNet201,
where the number indicates the convolutional layers in four DenseBlocks and transition
layers (to which the input and the last fully connected layer must be added to reach the
number indicated in the model name).

2.1.3. EfficientNet

Scaling up a network is not a trivial task. Both depth-wise and width-wise approaches
can be used to increase the network size and hopefully make it more powerful. Using
higher-resolution inputs is also a viable way to further improve the results. Unfortunately,
all of these solutions lead to a rapid increase in the parameters used and consequently
in the computational and memory resource requirements. The authors of [29] propose
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a new scaling method that aims to scale a given network along all its dimensions (i.e.,
depth/width/resolution) using a single compound coefficient. The paper proposes a baseline
network to be scaled up to obtain a family of networks, called EfficentNets, capable of
achieving higher accuracy compared to other state-of-the-art solutions. Based on some
previous research that showed a certain relationship between network width and depth,
the authors developed the compound scaling method over a simple idea: higher-resolution
images need deeper networks to increase the receptive field and additional channels to
capture the fine-grained patterns present in the image. Such compound scaling is based
on three constant coefficients, α, β, γ, which are related to the architectural choices of the
network in terms of depth, width and size of the input image, respectively. The main
component of EfficientNets is a residual block with an inverted structure compared to
the residual blocks used in ResNet (i.e., a narrower number of channels are used in the
information flow for efficiency reasons), to which squeeze-and-excitation optimization is
also added. In this paper, eight different architectures were tested, scaled from the baseline
version, named EfficientNet_b0, with different compound coefficients.

2.2. Visual Transformers

In recent years, the field of Natural Language Processing (NLP) has seen significant
progress with the introduction of transformers [47]. Such an approach is characterized by
high generality and computational efficiency, which led to the idea of Visual Transformers
(ViT) [48] in the field of image processing. ViT keeps the generic architecture unchanged,
making only the minor changes necessary to process images. Briefly, the input image is
divided into a set of visual tokens embedded in a set of encoded vectors including their
position in the image. The vectors are sequentially fed into the transformer encoding network,
which consists of three key elements: Layer Norm, Multi-head Attention Network (MSP), and
Multi-Layer Perceptrons (MLP). The MSP is dedicated to the generation of the attention
maps from the provided visual token, the layer norm makes the model adaptable to the
variations among images and, finally, MLP is a two-layer classification network. These
steps can be repeated multiple times into the transformer encoding network until the final
MLP block, known as MLP head, which is the output of the transformer and usually feeds a
softmax function to enable the classification task. As stated before, visual transformers keep
a higher generality and have a non-negligible advantage since the primary embedding is
context agnostic. The price is a drawback of the larger amount of training data required
to get the same performance as CNN. Moreover, it has been proved that they are able to
attend to image areas that are semantically relevant for classification. Beyond ViT base
implementation, some improvements have been recently proposed and two of the most
promising approaches are the Masked Auto-Encoders (MAE) [31] and Data-efficient image
Transformers (DeiT) [32].

2.2.1. MAE

Masked Auto-encoders (MAE) [31] are self-supervised learning approaches based
on an asymmetric encoder-decoder architecture. They take advantage of two main ideas:
masking a given percentage of the image patches and keeping this percentage high. This
approach employed the ViT [48] architecture for the encoding side (ViT are highly suitable
for the masked patch paradigm), enabling the training of large models efficiently and
effectively. The masking paradigm starts from the heavy spatial redundancy of image
where the recovery of a patch can be achieved by its neighbors even with a little knowledge
at a high level of the whole scene. On the other hand, masking a substantial portion of
the image forces the model to face a more challenging self-supervised problem, leading
to a holistic understanding of the image. Going into details, the solution proposed in [31]
is based on an asymmetric encoder-decoder design where the encoder takes in input a
subset of the image patches ignoring the masked ones. On the other side, a lightweight
decoder reconstructs the input from the provided latent representation. The use of just the
non-masked portion of the image patches, together with the use of a lightweight decoder,
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keeps the computational requirements low, boosting the training phase: an aspect that is
particularly profitable for data-hungry models like ViT. In this paper, we performed transfer
learning for the classification downstream task using the ViT-Base pre-trained checkpoint
available at https://github.com/facebookresearch/mae, accessed on 31 January 2022. The
Vit-Base was proposed in [48] and it is characterized by an embedding dimension D = 768,
number of heads h = 12 and number of layers L = 12 for a total 86M learnable parameters.

2.2.2. DeiT

In both above mentioned ViT and MAE approaches, the promising results in terms of
generality, accuracy and computational requirements have to pay the nontrivial drawback
related to the required huge amount of data that is not ever available. Data-efficient image
Transformers (DeiT) [32] leverage on a training phase based on a teacher-students strategy.
More precisely, it makes use of a distillation token ensuring that the student learns from the
teacher by means of the attention mechanism of transformers using a convolutional network
as a teacher. Knowledge distillation is considered both in form of soft and hard distillation
where the latter clearly outperforms the first one in all the experiments. It is also worth
noting as the use of a convolutional network as a teacher allows the trained transformers to
inherit the inductive bias if compared with transformers trained from scratch.

In this paper, the model pre-trained on the Imagenet dataset and available at (https://
github.com/facebookresearch/deit, accessed on 31 January 2022) has been fine-tuned. The
architecture design is the one proposed in [48] with no convolutions. The only differences
are the training strategies and the distillation token. For the pre-training, only a linear
classifier was used.

In the study presented in this paper, the best results were obtained, among all experi-
ments, using the DeiT-B model with 224× 224 input image size. This model follows the
same architecture as ViT-Base but with a different training strategy that does not use an
MLP head for the pre-training but only a linear classifier.

3. Results

In this section, the experimental results on the two datasets described in Section 2 are
reported. The evaluation was carried out in terms of accuracy given that the datasets used
are balanced. It has been computed as follows:

Accuracy =
[TP + TN]

[TP + TN + FP + FN]
(2)

where TP stands for True Positives (slices belonging to an AD subject correctly classified
as AD) and TN stands for True Negatives (slices belonging to a control subject correctly
classified as non-AD).

All experiments have been performed in Pytorch [49] deep learning framework using
an NVIDIA RTX 3090Ti GPU card equipped with 24GB of RAM.

3.1. Results by CNN

Table 2 reports the classification results obtained using the CNN models.
The best classification results are highlighted in bold in each column. Going deeper,

the DenseNet201 model generated the best results for the ADNI-2 dataset in the 4 slices per
subject case (accuracy 69.751%), while DenseNet161 and EfficientNet_b0 scored best in the
8 slices (accuracy 70.190%) and 16 slices (accuracy 69.534%) per subject cases, respectively.
On the OASIS-1 dataset, the ResNet-152 model performed best with 8 and 16 slices, with
an accuracy of 71.124% and 69%, respectively. The DenseNet169 was best in the case of
4 slices extracted per subject with an accuracy of 73.501%.

In Figure 2, the mean accuracy across datasets is reported. It represents the accuracy
reported by each model among validation folds on both datasets.

https://github.com/facebookresearch/mae
https://github.com/facebookresearch/deit
https://github.com/facebookresearch/deit
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Table 2. AD/NC classification accuracy gathered by CNN. The bold style highlights the best classifi-
cation results in each column.

Method

Cross-Validation Accuracy (%)

ADNI-2 OASIS-1

4 Slices 8 Slices 16 Slices 4 Slices 8 Slices 16 Slices

ResNet34 65.500 66.874 67.470 68.126 67.190 67.409

ResNet50 65.752 66.374 65.624 68.502 68.000 68.653

ResNet101 68.751 69.500 69.531 70.626 69.875 67.842

ResNet152 67.876 65.937 65.594 72.127 71.124 69.000

DenseNet121 66.378 65.438 66.219 70.252 70.312 67.654

DenseNet161 69.375 70.190 69.253 71.001 68.190 68.470

DenseNet169 66.873 66.564 65.468 73.501 70.814 67.780

DenseNet201 69.751 69.626 68.626 69.754 70.190 66.690

EfficientNet_b0 69.002 69.502 69.534 66.002 66.502 67.341

EfficientNet_b1 66.001 66.066 66.218 69.502 66.314 66.470

EfficientNet_b2 66.124 65.687 65.594 66.752 65.435 64.562

EfficientNet_b3 64.626 63.626 63.408 66.878 64.690 64.126

EfficientNet_b4 61.376 60.502 61.905 62.002 66.938 62.624

EfficientNet_b5 60.249 58.500 59.624 66.004 65.814 65.034

EfficientNet_b6 65.877 63.626 63.970 63.252 63.624 62.656

EfficientNet_b7 63.243 61.874 62.534 68.004 65.124 63.470

Figure 2. Accuracy across datasets of tested CNN models.

The ResNet152, DenseNet161 and DenseNet169 models gathered the best scores (a
few more than 70%) when 4 slices per subject were extracted (blue vertical bars). In the case
of 8 slices per subject (orange vertical bars), the model that experienced the best accuracy
clearly was the DenseNet201 model (mean accuracy almost 70%) whereas in the case of
16 slices per subject (grey vertical bars), the most accurate model was the DenseNet161
(mean accuracy more than 69%). Overall, all the DenseNet models provided satisfying
outcomes in all three experimental cases (average accuracy across experiments and models
68.68% against EfficientNetand ResNet models reaching 64.69% and 68.03%). Satisfactory
results were also reached by using deeper ResNet models and the tightest EfficientNet
one. From accuracy results in Table 2, it is possible to understand that, for the considered
classification problem, CNN requires representing the information on several levels of
extracted features. This can be better achieved by DenseNet architectures, which make use
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of identity connections on each layer. On the other side, ResNet architectures, which have
identity connections limited to blocks (of consecutive levels) work very well too, but they
are not able to completely get a representation of the information embedded in the data on
different datasets and benchmarks. Finally, it emerged that none of the eight EfficientNet
architectures provided excellent classification outcomes. The main reason for this drawback
could be the impossibility to transfer the information flow along layers through inverted
residual blocks relying on a narrowed number of channels. It might be possible to conclude
that this kind of architecture is not suitable for modeling such a complex problem as the
classification of brain MRI images.

3.2. Results by Visual Transformers

This section reports the results obtained by using two of the most recent and promising
visual transformer architectures that were never tested for the scope of AD diagnosis from
MRI images. Table 3 resumes the accuracy results for MAE and DeiT architectures. Both
architectures were tested on both datasets in the 4, 8 and 16 slices per subject cases. DeiT
outperformed MAE in each performed experiment with an accuracy of 77% for the 4 slices
experiment, 75.937% for the 8 slices experiment and 75.625% for the 16 slices experiments,
respectively. It is worth noting that, differently from CNN architectures, the accuracy of
visual transformers had fewer variations than CNN when the number of slices increased.
This might be due to the ability of the embedded self-attention mechanism to discard
useless information introduced by adding more slices; they were anyhow able to extract
robust knowledge from the available data although the classification problem became
more complex. In general, transformers architectures performed better than CNN ones
with a difference up to more than 7% between the most performing architectures in each
experimental phase (e.g., 69.751% by DenseNet201 against 77% by DeiT in the case of 4
slices per subject).

Table 3. AD/NC classification accuracy gathered by Visual Transformers. The bold style highlights
the best classification results in each column.

Method

Cross-Validation Accuracy (%)

ADNI-2 OASIS-1

4 Slices 8 Slices 16 Slices 4 Slices 8 Slices 16 Slices

MAE 73.555 73.125 71.875 72.375 71.875 70.937

DeiT 77.000 75.937 75.625 74.375 74.562 72.562

Summing up, through the experimental phases, it is possible to understand that
the self-attention mechanism of ViT resulted, so far, the winning key for this complex
classification problem. In our opinion, this is the main scientific funding of the manuscript.
The model splits the images into a series of positional embedding patches, which are
processed by the transformer encoder. This allows ViT to relate different positions of
the pixel values in the slides without requiring image-specific biases and then making it
possible to recognize anomalies due to dementia independently of their spatial locations.
This way, self-attention allows a very encouraging increase in classification accuracy that
could bring to the exploitation of automatic diagnosis in real clinical practice.

These are very encouraging results. The downside is that visual transformers have a
more significant number of learnable parameters with respect to CNN models (DeiT has
86M parameters, DenseNet201 has 20M parameters, ResNet101 has 40M parameters, and
ResNet152 has about 60M).

3.3. Comparisons to Leading Approaches

This section compares the best results achieved by the deep architectures, reported
in previous sections, with the leading state-of-the-art approaches. There are only a few
approaches that use the split of data by subject and therefore without a data leakage
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problem. They include 3 architectures introduced and tested in [22] on both ADNI-2 and
OASIS-1 datasets by extracting 8 slices per subject. The architectures are two different
variants of VGG and a ResNet-18. The first model, named VGG16-v1 consists of five
convolutional blocks followed by three fully connected layers which were fine-tuned.

The second model, VGG16-v2, includes a global average pooling layer after convolu-
tional blocks, and all the layers were fine-tuned. Finally, in [50] a different VGG16 model
was introduced for the scope: a global average pooling (GAP) layer was used instead
of fully connected (FC) layers and the last classification layer with a ‘softmax’ activation
was added.

Tests were performed in the case of 10 slices per subject. All the comparing works
used entropy criteria for selecting relevant slices. In Table 4, the proposed approach is
compared to the best-performing approaches in the literature (only works in which data
leakage has been avoided are considered). It is worth noting that the same k-fold with
k = 5 has been used for a fair comparison. Details on the CNN architectures can be found
in the respective papers [22,50].

Table 4. Comparison of the proposed approach with leading ones (with no data leakage issue) in
the literature. The bold style highlights the best classification results in each column.

Method
Cross-Validation Accuracy (%)

ADNI-2 OASIS-1

Previous

VGG16-v1 (8 slices) [22] 70.1 66
VGG16-v2 (8 slices) [22] 66.4 66.1
ResNet-18 (8 slices) [22] 68.6 68.8
VGG16 (10 slices) [50] 71.6

Proposed

ResNet152 (4 slices) 67.2 72
DenseNet201 (4 slices) 69.8 69.8
DenseNet161 (8 slices) 70.2 68.2

MAE (4 slices) 73.6 72.4
DeiT (4 slices) 77 74.4
DeiT (8 slices) 76 75.6

Table 4 clearly indicates the improvement introduced by the CNN models considered
in this work with respect to previous approaches proposed in the literature. Results reveal
how the tested DL architectures, and especially the visual transformer architectures (DeiT),
are the leading in MRI 2D slices classification in the case of no data leakage, making a
big step towards actual exploitation of CAD systems in real-life AD diagnosis. This is
corroborated also by observing ROC curves reported in Figures 3 and 4.
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ADNI-2 Average Cross-Validation ROCs

DeiT 4 Slices (AUC = 0.79)
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DenseNet161 (AUC = 0.73)
DenseNet201 (AUC = 0.73)
ResNet152 (AUC = 0.67)
MAE (AUC = 0.77)
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Figure 3. Cross-Validation ROCs related to ADNI-2 dataset.
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OASIS-1 Average Cross-Validation ROCs

DeiT 4 Slices (AUC = 0.74)
DeiT 8 Slices (AUC = 0.76)
DenseNet161 (AUC = 0.71)
DenseNet201 (AUC = 0.72)
ResNet152 (AUC = 0.75)
MAE (AUC = 0.76)
Chance level

Figure 4. Cross-Validation ROCs related to OASIS-1 dataset.

4. Conclusions

In this work, three different CNN strategies and two visual transformers were tested
for the first time to classify 2D MRI brain data as belonging to subjects with Alzheimer’s
dementia or healthy. The proposed approach started from 3D MRI volumes and extracted
the 2D slices with the highest entropy score after 3D registration and skull stripping
operations. Subsequently, subject-level partitioning was performed to avoid the common
drawbacks of data leakage. CNN and ViT architectures were then trained and tested on
two publicly available datasets and three different experimental cases, i.e., considering
4, 8, and 16 slices per subject. The results showed a significant improvement in accuracy
compared to the state-of-the-art and paved the way for the use of CAD approaches in
real applications.

There are some limitations to the study. Only a few of the newer deep-learning models
were tested. They were used as presented in the literature for traditional image classification
tasks. No task-specific changes to the models nor hyperparameter optimization were carried
out. In addition, there is a persistent discrepancy between the accuracy of the training
(more than 90% in all experiments) and test data. Finally, there is a lack of evaluation of
the positions of the extracted slices from brain volumes. The entropy criteria can pull out
very close and redundant slices indeed and furthermore, the informative content for the
AD classification may not necessarily be related to the data variability.

Future work will look at evaluating different criteria for extracting layers (beyond
entropy) and at using the proposed pipeline to account for informative content of each
slice to further increase the accuracy of diagnosis, but also to reduce the data content of
the inputs, making CAD more suitable for use in real-world applications. The use of tiny
visual transformers will be also addressed to obtain good classification based on fewer
parameters. Tiny versions have parameters comparable to mid-sized CNNs such as the
ResNet50 (less than 20 million parameters), and their accuracy should be carefully evaluated
in this challenging application domain. The use of visual transformers on multimodal
brain data (not just MRI) could also be an interesting research direction to advance this
field. Visual transformers could automatically account for relationships that occur within
and between modalities to further increase diagnostic accuracy. Finally, the proposed
pipeline could be also used in other medical fields (e.g., cancer detection and grading in
histopathology images).
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